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SUMMARY

Multidimensional upwind residual distribution schemes are extended to the context of continuous linear
space–time �nite elements for the time accurate solution of scalar and hyperbolic systems of conservation
laws. The formulation leads to a consistent discretization of the space-time domain, thus retaining the
properties of the underlying basic schemes both in space and time. We propose a particular space
–time mesh con�guration containing two layers of elements and three levels of nodes in time. This
construction leads to unconditionally stable implicit time stepping while retaining second-order spatial
and temporal accuracy in smooth �ows and monotone solution across steep gradients. The presented
schemes have a strong potential in the �eld of moving grids, since they allow a dynamic change of the
space–time mesh geometry. Numerical results demonstrate the robustness, accuracy and monotonicity
of the method. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last decade, a class of multidimensional upwind schemes has been developed for the
solution of hyperbolic conservation laws on unstructured grids composed of linear �nite ele-
ments. These schemes are based on the concept of residual distribution (RD), as �rst proposed
by Ni, Morton and collaborators (see in Reference [1]). Upwinding and characteristic decom-
position ideas have been incorporated by Roe, and further expanded by Roe, Deconinck,
Abgral and their coworkers, see Reference [1] for a recent overview. Present RD schemes
for systems of equations are robust and second-order accurate in space for steady state prob-
lems. However, when combined with the method of lines (e.g. explicit Runge–Kutta time
integration) to solve unsteady problems, space accuracy degrades to �rst order, similar to
what occurs with stabilized �nite elements when lumping the mass matrix. Several attempts
have been made in the past to overcome this di�culty, using explicit Lax–Wendro� [2, 3]
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and implicit Cranck–Nicholson type schemes combined with a full mass matrix for the time
dependent term [4]. In both approaches, a �ux corrected transport method was used in or-
der to have monotone discontinuity capturing, which is very unsatisfactory in the context of
characteristic based upwind schemes.
The linear second-order (thus non-monotone) RD schemes have been applied to large

eddy simulation by Caraeni [5, 6], using a dual time stepping method. In his second-order
time accurate implicit schemes the time dependent part of the residual is either upwinded in
space along with the convective part, or discretized centrally. Unfortunately, due to the choice
of discretization and distribution of the time dependent part of the residual, the monotonicity
of the solution during the transient phase is not guaranteed.
Recently, Abgrall [1, 7] proposed to use the idea of a continuous space–time residual dis-

tribution to preserve the higher spatial and temporal accuracy of the basic RD schemes. In
two spatial dimensions the solution is represented by a bilinear interpolation over space–time
on prismatic elements (triangular in space). The temporal slabs are naturally decoupled by
limiting the distribution for a given prismatic element to the three nodes located forward in
time. However, the schemes proposed by Abgrall, although being implicit, su�er from a severe
time step restriction due to positivity requirements.
In the present contribution we employ the idea of a continuous space–time method, but we

stay in the framework of linear simplicial �nite elements, i.e. in 1D we apply the existing
schemes to a triangulation of the space–time domain (tetrahedra for the case of two spatial
dimensions). In order to decouple the solution onto temporal slabs allowing time-marching,
the time step for a single-layer of the space–time elements has to satisfy a CFL restriction
of order one, thus again severely limiting the time step. However, combining two layers
in one implicit step allows unconditional stability for arbitrarily large time steps. The new
method is second-order accurate both in space and time and extremely robust, at the price of
a slightly-increased numerical dissipation originating from the time integration.

2. SPACE–TIME METHODS FOR HYPERBOLIC SYSTEMS IN ONE
SPATIAL DIMENSION

We �rst consider the numerical solution of a 1D scalar conservation law over the space–time
domain �= [xL; xR]× [0; tmax]:

∇ ·F(u)=0 for ∀(x; t)∈� (1)

where ∇≡ (@=@x; @=@t) is the Nabla operator in space–time, F=(F; u) is the �ux vector with
spatial and temporal components F and u, respectively, and u(x; t) is the conserved quantity.
The initial state is given as u(x; 0)= u0(x).
We now apply previously developed residual distribution schemes [1] to solve the unsteady

equation (1) on triangular elements in space–time, whereby no distinction is made between
the temporal and spatial components of the �ux at the level of the scheme. In general, this will
lead to a coupled solution over the entire space–time domain. However, due to the upwinding
property of the RD schemes, a natural decoupling of the temporal slabs can be achieved for a
well de�ned construction of the mesh, so that e�ectively a time marching method is obtained.
Recalling the basic idea of the RD schemes we �rst consider a general space–time triangu-

lation of the computational domain �. Assuming a piecewise linear variation of the solution
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Figure 1. Space–time elements used in the 1D case.

u over each triangular element, integration of equation (1) over element E yields the de�nition
of the total �uctuation or cell residual:

�T =
∫ ∫

E
∇ ·F d�= [ ·

∫ ∫
E
∇u d� (2)

where [=(a; 1)= (@F=@x; 1) is the linearized advection vector, taken to be cellwise constant.
We assume that the linearization is conservative, i.e. the constant advection vector satis�es

[ ·
∫ ∫

E
∇u d�=

∮
@E
F · n dS (3)

where the right-hand side is computed using a consistent contour integration. We consider
weighted residual distribution schemes of the form

�i=
∑
E; i∈E

�Ei =0 for ∀i ∈ (1; N ) (4)

where N is the total number of nodes of the mesh and �Ei is the contribution of element E to
node i, given by �Ei =�

E
i �

T . Here, �Ei is the distribution coe�cient, such that for a given
triangle with local node numbers {1; 2; 3} one has �E1 + �E2 + �E3 = 1. System (4) represents a
non-linear algebraic set of equations for the unknowns ui, which can be solved by using a
direct or iterative solver like Jacobi, Gauss Seidel or GMRES. In the present work we use
explicit iteration in pseudo time to solve the implicit system for each physical time step.
Typically, 10–50 explicit iterations are needed to converge the solution in pseudo time.
The multidimensional upwind property of the RD schemes implies that the residual of a

given cell only contributes to nodes which are downstream with respect to the constant
advection speed vector [. A node in element E is de�ned to be downstream if the side opposed
to this node sees an ingoing �ux. Mathematically this is expressed by requiring that the
corresponding upwinding parameter kEi = [ · ni=2 is positive, where ni is the inward showing
normal of the face opposite to node i, scaled with the length of the face (see Figure 1).
Hence, all the schemes considered here are upwind in the sense that

�Ei =0 for kEi 60 (5)
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Figure 2. Schematic look of the mesh used in the 1D single-layer scheme.
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Figure 3. Schematic look of the mesh used in the 1D double-layer scheme.

Three di�erent upwind schemes will be used in the present paper, as reviewed in Refer-
ence [1]:

• The linear N-scheme, which is positive and hence only �rst order.
• The linear LDA-scheme, which is second order and hence non-monotone.
• The monotone and second-order B-scheme, which is obtained by applying a non-linear
blending between the N-scheme and the LDA-scheme.

2.1. Single-layer scheme

The single-layer scheme operates on a temporal slab with thickness 	t composed of one
layer of space–time elements, with the nodes staggered in space between time levels n and
n+1, as shown in Figure 2. The mesh consists of two types of elements (see also Figure 1).
In order to decouple the temporal layers and allow time marching, nodes at level n must not
receive any residual contribution from slab [n; n+1], i.e. they have to satisfy ki60. Since the
temporal component of the advection vector is positive (equal to 1), this is always satis�ed
for triangles of type E2. For triangles of type E1, one obtains the simple CFL type condition:

CFLE1=
( |a|	t
	x

)
E1

6
1
2

for all triangles of type E1 (6)

allowing to determine the minimum as the global time step for the slab.

2.2. Double-layer scheme

The single-layer scheme, although being implicit, is subject to a severe time step limitation,
as shown by Equation (6). To relax this constraint, we propose to impose the decoupling
condition on a temporal slab consisting of two layers of elements, as shown in Figure 3.
The �rst and second layers have a temporal width 	t1 and 	t2, respectively. Now the grid
consists of three levels of nodes, denoted by n; n+1=2, and n+1. The CFL number for the
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double layer scheme is given by

CFL=
|a|(	t1 + 	t2)

	x
=CFL1

(
1 +

	t2
	t1

)
=CFL1(1 +Q) (7)

where CFL1 = |a|	t1=	x is the CFL number for the �rst slab, required to satisfy condition
(6) for all of its triangles of type E1. However, no condition is required for 	t2, hence an
arbitrarily large CFL number can be obtained by increasing the value of the time step ratio
Q=	t2=	t1, while maintaining unconditional stability. If a positive distribution scheme is
used, such as the N-scheme or the B-scheme, monotonicity is preserved in space–time, while
for the B-scheme and the LDA-scheme second-order accuracy in space and time is obtained.
Applying a time marching with CFL larger than one can be very useful to overcome local
time step restrictions due to very small cells in part of the domain, as will be shown in the
results.
Note, that unlike in the case of the single-layer scheme, the solution at time level n + 1

is obtained at the same spatial location as the solution at level n, while the solution at level
n+ 1=2 is not used for the subsequent time marching step from n+ 1 to n+ 2.

2.3. Extension to the system of Euler equations

The method extends trivially to hyperbolic systems in one spatial dimension, by applying the
system version of the upwind RD schemes, see Reference [1] and the references therein.
For the single-layer scheme, the marching (or decoupling) condition is obtained by requiring
(6) to be satis�ed for the largest eigenvalue of the Jacobian of the system, while for the
double-layer scheme unconditional stability is obtained for arbitrarily high CFL number, if
the marching condition is satis�ed for the �rst layer. Applications to the Euler equations for
a 1D unsteady shock tube and a quasi-1D steady nozzle �ow will be shown in the results
section.

3. EXTENSION TO TWO SPATIAL DIMENSIONS

Due to the lack of space, only the general ideas are presented here, more details will be
provided in a future publication. Both the single- and double-layer schemes can be easily
extended to two spatial dimensions, operating on tetrahedra using piecewise linear interpolation
of the solution in space–time. Indeed, all upwind RD schemes discussed before (N, LDA
and B) extend trivially to tetrahedra (see Reference [1]), and the upwinding condition (5)
remains valid, where the normal used in the de�nition of the upwind parameter ki is now
de�ned as the inward pointing face normal of the triangular face opposite to node i, scaled
with the area of the face.
The arrangement proposed for the single-layer space–time mesh uses again a staggering

in space, as shown in Figure 4. For the double-layer space–time scheme, the single-layer
domain is mirrored, so that the spatial mesh at level n + 1 is reduced to the spatial mesh
at level n (which is an arbitrary triangulation of the spatial domain). Note that the arrangement
of Figure 4 is not the only possible geometry, additional work is needed to study potentially
more economic con�gurations (in terms of number of nodes). Considering the single-layer
case, there are three types of tetrahedra, respectively with three (type E1), two (type E2)
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Figure 4. Three types of space–time elements used in the 2D single-layer geometry, and the schematic
view of the space–time mesh.

and one (type E3) node(s) located at level n. For tetrahedra of type E3 no contribution
of the residual is distributed to nodes at level n, while for tetrahedra of types E1 and E2
a decoupling condition can be derived by imposing Equation (5) for the nodes located at
level n, leading again to an explicit-type CFL condition on the timestep. For the double-layer
scheme, arbitrarily high CFL numbers can be used, if the marching condition is imposed on
the �rst layer, just as before.

4. NUMERICAL RESULTS

Numerical results are shown for the double-layer scheme in one and two spatial dimensions.
In the case of the Euler equations �; u; v, and p stand for the �uid density, components
of the velocity in the x; y direction and pressure, respectively. The ratio of speci�c heats is
�=1:4.

4.1. Veri�cation of order of accuracy

In order to measure the order of accuracy of the presented RD schemes, we perform two test
cases in 1D with known analytic solution for four di�erent mesh sizes, and compute the order
of accuracy of the N, LDA and B schemes based on the L2 norm of the numerical error.
The �rst test case is the problem of unsteady linear advection. The initial state is u0(x)=

sin(�x), for x∈[−1; 1], and the advection speed is a=1. The solution is computed at t=4
by taking Q=1 and global CFL=0:8.
In the second test problem a fully supersonic steady solution of the quasi-1D nozzle �ow

is considered. The section of the nozzle is given by S(x)=1 + 1:5(1 − 0:2x)2 for 06x65,
and S(x)=1+ 0:5(1− 0:2x)2 for 56x610. The governing equations of this problem contain
an algebraic source term in the momentum equation, which is proportional to p. This term is
evaluated elementwise by a simple linear approximation, and distributed to the nodes in an
upwind manner, consistently to the convective �uxes. In the initial state and at the supersonic
inlet boundary we prescribe the following uniform state: �=0:14; u=3 and p=0:1. In the
simulations Q=1 and CFL=0:99 were taken.
The observed order of accuracy is summarized in Table I. The unsteady results indicate that

the measured accuracy in space-time preserves the formal accuracy of the RD schemes [1].
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Table I. Measured order of accuracy of the N, LDA and B schemes.

Residual distribution scheme N LDA B

Steady Q1D nozzle (density) 1.00 2.01 2.14
Unsteady linear advection 0.97 2.00 1.66

Figure 5. Shu–Oscher test case. Left: second-order monotone space–time B-scheme on 801 spatial
nodes. Right: second-order MUSCL type �nite volume scheme on 800 points [8].

4.2. Shu–Osher shock tube problem

To show the performance of the new method in one spatial dimension, we compute the os-
cillating Riemann problem proposed by Shu and Osher [8], corresponding to the propagation
of a Mach 3 shock into a uniform domain superimposed by a sinusoidal density perturba-
tion. The initial state is de�ned by �L=3:857143, uL=2:629367, pL=10:333333 for x6−4
and �R=1 + 0:2 sin(5x), uR=0, pR=1 for x¿−4. In the computation we use Q=2 and
CFL=1:49. The solution at t=1:8 is shown in the left of Figure 5 for a mesh with 801
nodes in the spatial direction computed by the non-linear second-order monotonicity preserv-
ing B-scheme. The solid line corresponds to a solution on a mesh containing 1601 spatial
nodes. In the right of Figure 5, a second-order computation done by Shu and Osher is shown
using a MUSCL type �nite volume scheme on 800 points [8].

4.3. Mach 3 wind tunnel with a forward facing step

To illustrate the performance of the new schemes for an unsteady �ow in two spatial
dimensions, we compute the test case proposed by Colella and Woodward [9]. The spatial
mesh is a uniform triangulation of the domain with average size of the triangles given by
h=1=80, except for the corner of the step, where a severe local re�nement was used, as
shown in Figure 6. This re�nement is necessary to limit the numerical entropy production
at the corner, see also Reference [10] for more details. In total the spatial mesh has 38 740
triangles and 19 715 nodes.
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Figure 6. Part of the unstructured spatial grid used for the space–time computation.
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Figure 7. Mach 3 �ow over a forward facing step, non-linear second-order space–time
B-scheme. Left: t=1:0, right: t=4:0.

Figure 8. Mach 3 �ow over a forward facing step. Reference solution: third-order PPM scheme on
Cartesian mesh [9]. Left: t=1:0, right: t=4:0.

The computation is made with the non-linear B-scheme using the double-layer
approach on space–time tetrahedra. The global timestep is chosen such that CFL≈ 1 for the
triangles in the uniform region. However, in the corner region this amounts to a local value
of CFL≈ 12, due to the small size of the cells in this area. This clearly shows the bene�t of
an unconditionally stable scheme, even for unsteady computations.
Isolines of the density at di�erent instances in time are presented in Figure 7 and compared

with the solution of Reference [9] (see Figure 8). This reference solution is computed with
a third-order PPM method on a uniform mesh with square cells of size h=1=80.
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5. CONCLUSIONS

In the present paper existing steady RD schemes have been extended to the context of lin-
ear space–time elements for the time-accurate solution of conservation laws. We proposed a
double-layer variant of the method allowing arbitrary physical time steps, while retaining un-
conditional stability if a CFL like condition is respected by the temporal width of the �rst
layer in the mesh. At the same time the method is guaranteed second-order and monotone
in space–time, inheriting the properties of the underlying steady schemes. Using high CFL
numbers is particularly important if the mesh contains highly re�ned regions, e.g. around cor-
ners. This is also the case for Navier–Stokes computations, where the small mesh size in the
boundary layer constrains the time step much more than the physical time scale of interest.
Like in the case of any implicit time integration method allowing high CFL numbers, one

physical time step requires the solution of an implicit system of equations. In the present
approach the full space–time mesh contains approximately four times the unknowns of the
spatial grid, for the case of the double-layer scheme in two spatial dimensions. This is a
substantial overhead compared to classical approaches, and it has to be balanced by improved
accuracy, monotonicity and stability. A detailed comparison is beyond the scope of this paper
and is the subject of future work.
On the other hand, the space–time RD method proposed here has strong potential in the

�eld of applications involving moving boundaries. Since the second and the third levels of
nodes may have di�erent spatial co-ordinates than the nodes at the �rst level, the number
of grid points and spatial positions can dynamically change in time, while retaining full
conservation, monotonicity and higher order accuracy in both space and time.
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